DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination
نویسندگان
چکیده
Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis.
منابع مشابه
CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1
Topoisomerases class II (topoII) cleave and re-ligate the DNA double helix to allow the passage of an intact DNA strand through it. Chemotherapeutic drugs such as etoposide target topoII, interfere with the normal enzymatic cleavage/re-ligation reaction and create a DNA double-strand break (DSB) with the enzyme covalently bound to the 5'-end of the DNA. Such DSBs are repaired by one of the two ...
متن کاملRadiation-induced double-strand breaks require ATM but not Artemis for homologous recombination during S-phase
Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resec...
متن کاملBreak dosage, cell cycle stage and DNA replication influence DNA double strand break response
DNA double strand breaks (DSBs) can be repaired by non-homologous end joining (NHEJ) or homology-directed repair (HR). HR requires nucleolytic degradation of 5' DNA ends to generate tracts of single-stranded DNA (ssDNA), which are also important for the activation of DNA damage checkpoints. Here we describe a quantitative analysis of DSB processing in the budding yeast Saccharomyces cerevisiae....
متن کاملRIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection
The appropriate execution of DNA double-strand break (DSB) repair is critical for genome stability and tumor avoidance. 53BP1 and BRCA1 directly influence DSB repair pathway choice by regulating 5' end resection, but how this is achieved remains uncertain. Here we report that Rif1(-/-) mice are severely compromised for 53BP1-dependent class switch recombination (CSR) and fusion of dysfunctional...
متن کاملPre-Exposure to Ionizing Radiation Stimulates DNA Double Strand Break End Resection, Promoting the Use of Homologous Recombination Repair
The choice of DNA double strand break (DSB) repair pathway is determined at the stage of DSB end resection. Resection was proposed to control the balance between the two major DSB repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Here, we examined the regulation of DSB repair pathway choice at two-ended DSBs following ionizing radiation (IR) in G2 phase of th...
متن کامل